Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
Ajouter des filtres

Base de données
Type de document
Gamme d'année
1.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.02.27.22271399

Résumé

Background: In October 2020, the National Cancer Institute (NCI) Serological Sciences Network (SeroNet) was established to study the immune response to COVID-19, and to develop, validate, improve, and implement serological testing and associated technologies. SeroNet is comprised of 25 participating research institutions partnering with the Frederick National Laboratory for Cancer Research (FNLCR) and the SeroNet Coordinating Center. Since its inception, SeroNet has supported collaborative development and sharing of COVID-19 serological assay procedures and has set forth plans for assay harmonization. Methods: To facilitate collaboration and procedure sharing, a detailed survey was sent to collate comprehensive assay details and performance metrics on COVID-19 serological assays within SeroNet. In addition, FNLCR established a protocol to calibrate SeroNet serological assays to reference standards, such as the U.S. SARS-CoV-2 serology standard reference material and First WHO International Standard (IS) for anti-SARS-CoV-2 immunoglobulin (20/136), to facilitate harmonization of assay reporting units and cross-comparison of study data. Results: SeroNet institutions reported development of a total of 27 ELISA methods, 13 multiplex assays, 9 neutralization assays, and use of 12 different commercial serological methods. FNLCR developed a standardized protocol for SeroNet institutions to calibrate these diverse serological assays to reference standards. Conclusions: SeroNet institutions have established a diverse array of COVID-19 serological assays to study the immune response to SARS-CoV-2 virus and vaccines. Calibration of SeroNet serological assays to harmonize results reporting will facilitate future pooled data analyses and study cross-comparisons.


Sujets)
COVID-19 , Syndrome respiratoire aigu sévère , Tumeurs
2.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.01.05.20249061

Résumé

The reason for the striking differences in clinical outcomes of SARS-CoV-2 infected patients is still poorly understood. While most recover, a subset of people become critically ill and succumb to the disease. Thus, identification of biomarkers that can predict the clinical outcomes of COVID-19 disease is key to help prioritize patients needing urgent treatment. Given that an unbalanced gut microbiome is a reflection of poor health, we aim to identify indicator species that could predict COVID-19 disease clinical outcomes. Here, for the first time and with the largest COVID-19 patient cohort reported for microbiome studies, we demonstrated that the intestinal and oral microbiome make-up predicts respectively with 92% and 84% accuracy (Area Under the Curve or AUC) severe COVID-19 respiratory symptoms that lead to death. The accuracy of the microbiome prediction of COVID-19 severity was found to be far superior to that from training similar models using information from comorbidities often adopted to triage patients in the clinic (77% AUC). Additionally, by combining symptoms, comorbidities, and the intestinal microbiota the model reached the highest AUC at 96%. Remarkably the model training on the stool microbiome found enrichment of Enterococcus faecalis, a known pathobiont, as the top predictor of COVID-19 disease severity. Enterococcus faecalis is already easily cultivable in clinical laboratories, as such we urge the medical community to include this bacterium as a robust predictor of COVID-19 severity when assessing risk stratification of patients in the clinic.


Sujets)
COVID-19 , Syndrome respiratoire aigu sévère
SÉLECTION CITATIONS
Détails de la recherche